COMP212 Computer Organization and Systems

Tutorial/Lab \#4

Problems about Cache Memory

4.2 A two-way set associative cache has lines of 16 bytes and a total size of 8 bytes. The 64-Mbyte main memory is byte-addressable. Show the format of main memory address.

Ans.
A two-way set => 2 lines / set in the cache;
The cache has lines of 16 bytes and a total size of 8 K bytes
\Rightarrow There are a total of 8 K bytes $/ 16$ bytes $=512$ lines $\left(2^{3} * 2^{10} / 2^{4}\right)$ in the cache;
' 2 lines / set in the cache' AND 'There are a total of 512 lines in the cache'
=> The cache consists of 512 lines/2 lines/set $=256$ sets
=> 8 bits $\left(256=2^{8}\right)$ are needed to identify the set number.

64-Mbyte main memory is byte-addressable
=> There are 64 M units to be addressed
\Rightarrow A 26 -bit $\left(2^{6 *} 2^{20}\right)$ address is needed;
'The cache has lines of 16 bytes’ AND '64-Mbyte main memory'
\Rightarrow Main memory consists of 64-Mbyte/16 bytes $=2^{22}$ blocks
=> The length of Tag + Set $=22$
=> The length of Tag $=22-8=14$;
The word field length is $26-22=4$ bits
(Another way to calculate word field length:
The cache has lines of 16 bytes => The main memory block size is 16 bytes;
The main memory is byte-addressable $=>$ The word length (size) is 1 byte;
=> There are $16 / 1=16$ words in one block;
$\Rightarrow 4$ bits $\left(16=2^{4}\right)$ are needed to identify the word number.)
Therefore, the format of main memory is

Tag	Set	Word
14	8	4

4.3 For the hexadecimal main memory address 111111, 666666, BBBBBB, show the following information, in hexadecimal format:
a) Tag, Line, and Word values for a direct-mapped cache, using the format of Figure 4.8 (slide 27).

Ans.

Address (in hexadecimal format)	111111	666666	BBBBBB
Address (in binary format)	000100010001000100010001	011001100110011001100110	101110111011101110111011
Tag	$00010001\left(11_{\mathrm{h}}\right)$	$01100110\left(666_{\mathrm{h}}\right)$	$10111011\left(\mathrm{BB}_{\mathrm{h}}\right)$
Line	$00010001000100\left(444_{\mathrm{h}}\right)$	$01100110011001\left(1999 \mathrm{~h}_{\mathrm{h}}\right)$	$10111011101110\left(2 \mathrm{EEE}_{\mathrm{h}}\right)$
Word	$01\left(1_{\mathrm{h}}\right)$	$10\left(2_{\mathrm{h}}\right)$	$11\left(3_{\mathrm{h}}\right)$

4.4 List the following values:
a) For the direct cache example of Fig.4.8: address length, number of addressable units, block size, number of blocks in main memory, number of lines in cache, size of tag.

Tag
Main memory address $=$8 14 Word

Ans.
Address length: 24 bits
Number of addressable unit: 2^{24}, i.e. 16 M unit
Block size: 2^{2}, i.e. 4 words
Number of blocks in main memory: $2^{24} / 2^{2}$, i.e. 2^{22}
Number of lines in cache: 2^{14}, i.e. 16 K lines
Size of tag: 8 bits
b) For the associative cache example of Fig.4.10: address length, number of addressable units, block size, number of blocks in main memory, number of lines in cache, size of tag.

Associative
 Mapping Example

Ans.
Address length: 24 bits
Number of addressable unit: 2^{24}, i.e. 16 M unit
Block size: 2^{2}, i.e. 4 words
Number of blocks in main memory: $2^{24} / 2^{2}$, i.e. 2^{22}
Number of lines in cache: 2^{14}, i.e. 16 K lines
Size of tag: 22 bits
c) For the associative cache example of Fig.4.12: address length, number of addressable units, block size, number of blocks in main memory, number of lines in set, number of set, number of lines in cache, size of tag.

16 MByte Main Memory

Ans.
Address length: 24 bits
Number of addressable unit: 2^{24}, i.e. 16 M unit
Block size: 2^{2}, i.e. 4 words
Number of blocks in main memory: $2^{24} / 2^{2}$, i.e. 2^{22}
Number of lines in set: 2
Number of set: 2^{13}
Number of lines in cache: 2^{14}, i.e. 16 K lines
Size of tag: 9 bits
4.5 Consider a 32-bit microprocessor that has an on-chip 16-KByte four-way setassociative cache. Assume that the cache has a line size of four 32-bit words. Draw a block diagram of this cache showing its organization and how the different address fields are used to determine a cache hit/miss. Where in the cache is the word from memory location ABCDE8F8 mapped?

Ans.
A four-way set => 4 lines/set in the cache;
'16-KByte cache' AND 'the cache has a line size of four 32-bit words'
\Rightarrow There are $16 \mathrm{~K} * 8 / 4 * 32=2^{14 *} 2^{3} / 2^{2} * 2^{5}=2^{10}=1024$ lines in the cache
'4 lines/set' AND ' 1024 lines in the cache'
\Rightarrow There are $1024 / 4=256=2^{8}$ sets in the cache
=> Set length is 8
Line size is $4 * 32$ bits $=16$ bytes
=> 4 bits are needed to identify a byte;
ABCDE8F8 => memory address is 32 bits
So the tag length is $32-8-4=20$

Example: doubleword from location ABCDE8F8 is mapped onto: set 143, any line, doubleword 2:

4.6 Given the following specifications for an external cache memory: four-way setassociative, line size of two 16 -bit words; able to accommodate a total of 4 K 32 -bit words; used with 24 -bit addresses. Design the cache structure.

Ans.
A four-way set => 4 lines/set in the cache;
Line size is $2 * 16$ bits $=4$ byte
=> 2 bits are needed to identify a byte
A total of 4 K 32 -bit words $=>$ cache size is $2^{2} * 2^{10} * 2^{2}=2^{14}$ bytes
So there are $2^{14} / 4=2^{12}$ lines totally, which is equal to $2^{12} / 4=2^{10}$ sets => 10 bits are needed to identify a set

So the Tag length is $24-2-10=12$

4.8 Consider a machine with a byte addressable main memory of 2^{16} bytes and block size of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this machine.
a) How is a 16 -bit memory address divided into tag, line number, and byte number?
b) Into what line would bytes with each of the following addresses be stored?
c) Suppose the byte with address 0001101000011010 is stored in the cache. What are the addresses of the other bytes stored along with it?
d) How many total bytes of memory can be stored in the cache?
e) Why is the tag also stored in the cache?

Ans.
a) Address length: 16 bits

Word: 3 rightmost bits (as the block size if 8 bytes)
Line: 5 middle bits (as there are 32 lines)
Tag: 8 leftmost bits (as $16-3-5=8$)
b)

$000100010001 \mathbf{1 0 1 1}$	\rightarrow line 3
$11000011 \mathbf{0 0 1 1 0 1 0 0}$	\rightarrow line 6
$110100000001 \mathbf{1 1 0 1}$	\rightarrow line 3
$10101010 \mathbf{1 0 1 0 1 0 1 0}$	\rightarrow line 21

c)
bytes with addresses 0001101000011000
0001101000011001
0001101000011010
0001101000011111
are stored in the cache.
d)

32 lines $\times 8$ bytes $=256$ bytes
e) It is because 2 items with two different memory addresses can be stored in the same place in the cache. The tag is used to distinguish between them.
4.11 Consider a memory system that uses a 32 -bit address to address at the byte level, plus a cache that uses a 64-byte line size.
a) Assume a direct mapped cache with a tag field in the address of 20 bits. Show the address format and determine the following parameters: number of addressable units, number of block in main memory, number of lines in cache, size of tag.

Ans.
a) Address format: $\mathrm{Tag}=20$ bits, Word=6 bits (64-byte line size), Line $=32-20-6=6$ bits

Number of addressable units: 2^{32}, i.e. 4 Giga unit
Number of block in main memory: $2^{32} / 2^{6}$, i.e. 2^{26}
Number of lines in cache: $2^{6}=64$ lines
Size of tag: 20 bits
b) Assume an associative cache. Show the address format and determine the following parameters: number of addressable units, number of block in main memory, number of lines in cache, size of tag.

Ans.
b) Address format: Word=6 bits (64-byte line size), Tag=32-6=26 bits

Number of addressable units: 2^{32}, i.e. 4 Giga unit
Number of block in main memory: $2^{32} / 2^{6}$, i.e. 2^{26}
Number of lines in cache: undetermined
Size of tag: 26 bits
c) Assume a 4-way set associative cache with a tag field in the address of 9 bits. Show the address format and determine the following parameters: number of addressable units, number of block in main memory, number of lines in cache, size of tag.

Ans.
c) Address format: Tag= 9 bits, Word=6 bits (64-byte line size), Set=32-9-6=17 bits

Number of addressable units: 2^{32}, i.e. 4Giga unit
Number of block in main memory: $2^{32} / 2^{6}$, i.e. 2^{26}
Number of lines in set: 4
Number of sets in cache: 2^{17}
Number of lines in cache: $4 * 2^{17}=2^{19}$
Size of tag: 9 bits
4.12 Consider a computer with the following characteristics: total of 1MByte of main memory; the word size is one byte; block size of 16 bytes; and cache size of 64 Kbytes .
a) For the main memory addresses of F 0010 , 01234, and CABBE, give the corresponding tag, cache line address, and word offsets for a direct-mapped cache.
b) Give any two main memory addresses with different tags that map to the same cache slot for a direct-mapped cache.

Ans.
a) Word=4 bits,

Number of cache lines=64Kbytes/16bytes=4K lines=4096 lines. To address them, we need 12 bits. Thus, the tag will take up $20-12-4=4$ bits
For MM address
F0010=1111 $0000000000010000 \rightarrow$ Tag=1111 (F), Line=001, Word Offset=0
$01234=00000001001000110100 \rightarrow$ Tag=0000 (0), Line=123, Word Offset=4
CABBE=1100 $1010101110111110 \rightarrow$ Tag=1100 (C), Line=ABB, Word Offset=E
b) We need to pick any address where the slot is the same, but the tag (and optionally, the word offset) is different. For the line/slot=1111 11111111 (altogether 12 bits), we have
Address 1: Word offset=1111; Slot=1111 1111 1111; Tag=0000
Address=0FFFF
Address 2: Word offset=0001; Slot=1111 1111 1111; Tag=0011
Address=3FFF1
4.19 A computer has a cache, main memory, and a disk. If a referenced word is in the cache, 20 ns are required to access it. If it is in the main memory but not in the cache, 60 ns are required to load it into the cache, and then the reference is started again. If the word is not in the main memory, 12 ms are needed to load it from the disk to main memory, followed by 60 ns to copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9 and the main memory hit ratio is 0.6 . What is the average time needed to access a referenced word?

Ans.
There are three cases to consider:

Location of referenced word	Probability	Total time for access in ns
In cache	0.9	20
Not in cache, but in main memory	$(0.1)(0.6)=0.06$	$60+20=80$
Not in cache or main memory	$(0.1)(0.4)=0.04$	$12 \mathrm{~ms}+60+20=12,000,080$

So the average access time would be:

$$
\mathrm{Avg}=(0.9)(20)+(0.06)(80)+(0.04)(12000080)=480026 \mathrm{~ns}
$$

